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ReferenceValue Advisor is a set of Excel macros that compute reference intervals from data 

contained in spreadsheet. It closely follows the CLSI guideline [1]. 

It also allows to study how covariates are linked to reference intervals. 

 

Data 

The data should be contained in columns whose first line indicates the name of the analyte for 

which a reference interval is to be computed. 

 

A click on the button  gives the following menu 

 

 
 

 

Select the data with the mouse and click on the OK button. 

 

Results given by Reference Value Advisor 

Reference Value Advisor creates  

- for each analyte a spreadsheet containing the report of the analysis, 

- for all analytes a spreadsheet containing information about outliers,  

 

As an example open the file Example 

This file contains three columns: Creat, Urea and age. 
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Selecting the columns Creat and Urea produces three spreadsheets: Report for Creat, Report 

for Urea, Outliers Analysis. 

The spreadsheet Outliers Analysis contains outliers' information for both Creat and Urea. 

 

Let us see now in detail the information given in the report spreadsheet. 

This spreadsheet contains 2 pages reproduced hereafter. 

 

Reference Value 
Advisor V2.1 

Results for Creat 

      Date 13/02/2012 
      Performed by Didier 

            

      

 
Untransformed data Box-Cox transformed data 

 

Method Standard Robust Standard Robust Nonparametric 

            

      N 1460 1460 1460 1460 1460 

Mean 97.7 
 

32.4 
  Median 97.0 97.4 32.2 32.4 

 SD 15.4 15.5 7.1 7.1 
 Mininum 50 50 8.1 8.1 
 Maximum 149 149 54.5 54.5 
             

1 coefficient Box-Cox
  

-37.842 -37.842 
 2 coefficient Box-Cox

  
0.808 0.808 

 P-Value Anderson-Darling/ 0.013 
 

0.228 
  Symmetry test for Robust   0.000   0.000   

      Outliers Dixon 
     Outliers Tukey 0 0 0 0 

 Suspect data Tukey 8 8 7 7 
             

      Lower limit of reference interval 67.4 67.1 68.6 68.6 69.0 

Upper limit of reference interval 128.0 127.7 129.1 129.0 128.5 

      90% CI for lower limit 66.4 65.9 67.6 67.6 68.0 

 
68.6 68.3 69.6 69.6 70.0 

90% CI for upper limit 126.8 126.6 127.8 127.8 127.0 

 
129.2 128.9 130.3 130.2 131.0 

            

Comments 
     Suspect data detected according to Tukey. IFCC-CLSI C28-A3 recommends that unless these data  

 are known to be aberrant observations, the emphasis should be on retaining rather than deleting them. 
 The sample size is large enough to compute the nonparametric reference interval: [69 ; 128.5]. 
 The 90% CI of one (or more) limit is larger than recommended in IFCC-CLSI C28-

A3. 
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The standard method 

The standard method assumes the data distribution is Gaussian and the 95% reference interval 

is computed as 
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where  

N is the sample size named as N in the output table, 

m̂  is the sample mean. Its value is given in the Mean row,  

̂  is the sample standard deviation whose value is given in the SD row, 
975.0

1Nt  is the 0.975 quantile of a Student distribution with N-1 degrees of freedom. 

The lower (resp. upper) limit of the reference interval is given in the row entitled Lower limit of 

reference interval (resp. Upper limit of reference interval) for the columns named Untransformed data. 

 

The robust method 

The robust method assumes that the data distribution is symmetric without being necessarily 

Gaussian. It is built using robust statistics (median and median absolute deviation) that are 

less sensitive to outliers. This reference interval is obtained by a process that iteratively gives 

a smaller weight to data far from the central location. The method is fully explained in [2] and 

the tuning parameters that need to be used for this computation are given in [1]. 

The 95% reference interval is computed with the robust method is given by 

 SDtTSDtT NN

975.0

1

975.0

1 ;     (eq. 2) 

where  

N is the sample size named as N in the output table, 

T  is an estimate of the central location of the data distribution. Its value is given in the Median 

row,  

SD is an estimate of the data dispersion whose value is given in the SD row 
975.0

1Nt  is the 0.975 quantile of a Student distribution with N-1 degrees of freedom. 

The lower (resp. upper) limit of the reference interval is given in the row entitled Lower limit of 

reference interval (resp. Upper limit of reference interval). 

The robust method is sensitive to asymmetry of the distribution. For this reason, the data 

distribution should be first carefully inspected.  

Confidence intervals of the limits 

Confidence intervals (CI) of the reference limits are computed for all methods. 

For the standard method the 90% CI is obtained using parametric bootstrap when N20. 

In all other cases a nonparametric bootstrap is used. 

Reference Interval Advisor spends most of the computation time to compute these confidence 

intervals. 

The 90% confidence interval of the lower (resp. upper) reference limit is given in the rows 

90% CI for lower limit (resp. 90% CI for upper limit). 

The width of the confidence intervals depends on the sample size N and on the data 

dispersion. When N is low, the confidence intervals are wide while large N give narrow 

confidence intervals. The confidence interval of the reference limits should be given whatever 

the sample size used for the computation. They give useful information on the precision of the 

computed reference interval. 
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The generalized Box-Cox transformation 

The generalized Box-Cox transformation columns contains information about the data after 

the following Box-Cox transformation  
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The parameters  and that enter in the Box-Cox transformation are chosen so that the 

transformed data distribution is as Gaussian as possible. The  values given in the λ coefficient 

Box-Cox rows optimize the likelihood. An interval is first build using equation (eq. 1) on the 

Box-Cox transformed data. This interval is then back-transformed using  .1

h  to give the 

reference interval given in the rows Lower/Upper limit of reference interval for the columns Box-Cox 

transformed data. The function  .1

h  is given by 
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Normality and symmetry tests 

Normality is required by the standard method for an accurate computation of the reference 

interval. The row p-value Anderson-Darling/symmetry test for Robust gives the result of the 

normality test for both the untransformed and the Box-Cox transformed data. When it is little 

than 0.05, normality should be questioned. Non normality can be due to a non-normal 

distribution or presence of outliers. There exist other tests for normality such as Kolmogorov-

Smirnov test, Chi-square test… We deliberately chose to retain only the Anderson-Darling 

test as it mainly looks for deviation from normality in the tails of the distribution which are of 

primary importance for the reference interval determination. 

 

The robust method required the data distribution to be symmetrical about its median. For the 

robust method, the result of the symmetry test is contained in the row p-value Anderson-

Darling/symmetry test for Robust. When this P-value is less than 0.05, symmetry should be 

questioned and the robust method should not be used. This test is completely described in [4]. 

 

Outliers 

An outlier is a value that has a small probability to have been observed in the reference 

population. Outliers can distort a reference interval determination. There exist three kinds of 

outliers: 

1. data that are the results of a mistake. These data should be removed from the analysis. 

2. data that have been collected on a patient that does not belong to the reference 

population. If the reference population contains values for healthy patients, other 

results such as analytes concentrations/ clinical examination can help to detect these 

patients. When detected, these data should be removed from the analysis. 

3. data that are far from the other. This situation is touchier than the two others as it can 

be explained by 1°), 2°) or by a wrong choice of distribution to describe the data. It 

can be identified by a large number of values detected as suspect or as outliers. When 

the chosen distribution does not fit the data, it is reasonable to change the distribution 

not the data. 

For this reason, we suggest  

a) to use the robust method [2] described hereafter that is less sensitive to the 

shape of the chosen distribution. 
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b) to compute the reference interval after removing these data and to compare 

the reference intervals obtained with and without the potential outliers. If the 

reference interval does not change too much then keeps this reference 

interval. 

c) to get more data (at least 120) so that the nonparametric method can be used. 

As we will see, the nonparametric method does not assume any specific 

shape for the data distribution. 

d) to change the distribution. As the current version of this code does not 

propose other distributions, a solution is to consult your preferred 

statistician. 

 

The three lines Outliers Dixon, Outliers Tukey and Suspect data Tukey should help you to 

detect such values. 

 

The row Outliers Dixon gives the results of the tests for the minimum and the maximum values 

of the untransformed/Box-Cox transformed data. The corresponding cells table can contain 

Min, Max or Min/Max respectively meaning that the minimum, the maximum, both the 

minimum and the maximum values are outliers. When these cells are empty, the Dixon test 

did not detect that these values as outliers. This test is known to be rather insensitive. 

 

The rows Outliers Tukey and Suspect data Tukey respectively contain the number of outliers and 

suspect data identified using the Tukey method [3]. 

Tukey differentiated "mild" and "extreme" outliers that we here respectively named suspect 

and outliers data. 

If Q1, Q2, Q3 respectively represent the first, second and third quartiles of the distribution 

and IQ=Q3-Q1 is the inter-quartile range, outliers are data smaller than Q1-3 IQ or greater 

than Q3+3*IQ and suspect data are data contained in the interval [Q1-3 IQ; Q1-1.5 IQ] or in 

[Q3+1.5*IQ ; Q3+3*IQ]. 

The suspect data and the outliers are respectively written in orange and red cells in the 

columns written on the rhs of the spreadsheet. 

 

Graphs 

Box-plot 
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Covariates 
When you expect the reference interval of your data to change with some covariates, you can 

try to build a reference interval for each value of the covariates. RefValAdv allows you to do 

such a thing but it only admits continuous covariates such as age, weight etc… 

A lot of methods can be used to build reference intervals with covariates. The main 

differences between these methods rests on the knowledge you have on the distribution of 

your data: 1) you know, or you expect, that for each value of your covariates, your data are 

normally distributed up to some transformation 2) you do not know the distribution of your 

data or you expect your data to be non-normally distributed. 

 

1) Parametric models 

The distribution of data is described using the Gaussian distributions. Such descriptions are 

called models. 

Recall that when the data distribution is normal with a population mean m and a population 

standard deviation , then the reference interval  

[m-2 ; m+2]     (eq. 3) 

contains the values that can be observed in 95% of healthy individuals.  

 

 
 

 

For parametric Gaussian models, we expect the population mean m to change with the 

covariates. 

Let us take an example to fix ideas. Assume that we are interested in the building of reference 

intervals of creatinine for dogs of different ages. Assume that we know that the creatinine 

population mean is a linear function of age:               
If the dispersion of creatinine (standard deviation ) does not change with age, the reference 

interval for a given age is built as previously by: 

[          -2 ;           +2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m m+2 m-2 

2.5% 2.5% 

Age 

Creat 
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Assume now that instead of Age, we have p covariates denoted by X1,…, XP. If the population 

mean m depends linearly on these covariates we have: 

                    .    (eq. 4) 

Under the assumption that the standard deviation  does not change with these covariates, the 

reference interval becomes 

[                   -2 ;                   +2]. 

When the average relationship between the data and a covariate seems to be nonlinear, a 

polynomial can be used instead. As an example, if the creatinine population mean is a 

polynomial function of degree p of age: 

                  
            

  

 

Such models with standard deviation that does not change with covariates are called 

homoscedastic. 

In heteroscedastic models, the standard deviation is free to change with covariates. Only one 

kind of heteroscedasticity has been implemented in this version of Reference Value Advisor: 

      (     )  
where s and a are two parameters. 

Notice that when a =0, this model becomes homoscedastic. 

For heteroscedastic models, when the population mean m depends on covariates as in eq. 4, 

the variance     is given by  

      (    (                  ))
 

. 

The reference interval obtained with this heteroscedasticity is 

[                    √ 
 (    (                  ))

 
  

                    √ 
 (    (                  ))

 
] (eq. 5) 

which has exactly the same structure as eq. 1. 

These reference intervals are built assuming that both the population mean m and the standard 

deviation  are known which is never the case in practice. These values are estimated on a 

sample of individuals. We thus only have sample estimates that give information about the 

actual value of the parameters but with an error measured by the standard error (se). 

When, in (eq. 5), estimates are used instead of the parameters that enters in m and , the 

general form of the reference change a little bit to account for such an error of estimation. A 

precise description of these changes is beyond the scope of this short explanation. 

 

Box-Cox transformation 

When for each value of the covariate the data distribution is not Gaussian, a data 

transformation can be used to “normalize” the distribution. Several families of 

transformations are used by statisticians among which, the Box-Cox transformation is likely 

the most famous. 

The Box-Cox transformation with parameter  (lambda) is given by 
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When this transformation is linear implying that there is no need to transform the data to 

normalize their distribution. 

When  goes to 0, this transformation becomes the natural logarithm: ln(y). This suggests that 

taking the natural logarithm of the data should normalize their distribution. 

 

Model validation 

In a parametric Gaussian model, it is assumed that  

- the mean population m depend on covariates as described by the model 

- the dispersion of the data about the mean population m changes (or does not 

change) as described by the model 

- for each value of the covariates, the data (y) is normally distributed. 

Such assumptions need to be checked carefully. A simple graphical way to check these 

assumptions is to represent the weighted residuals  

  
   

 
 

as a function of covariates and/or as a function of the fitted values. 

When these three assumptions hold, the weighted residuals should be in a band with a 

constant width about 0. 

 

Reference for the technical part  

The considered model can be written as 

  ( )           (eq. 6) 
where  

  ( ) is a vectorial function equal to identity when no Box-Cox transformation is chosen and 

to 
    

 
  for Box-Cox transformed data. 

Y is the n-vector containing the data 

X is a nxp whose columns contain the covariates 

  is a p-vector of parameters to be estimated 

  is an unobserved random variable assumed to be  (      ) 
C is a diagonal matrix equal to the identity matrix I for homoscedastic models, and to 

    [(     )(     )] for heteroscedastic models. 

 

The estimates of           are obtained by maximization of the likelihood. 

Estimating the limits of reference interval remain to find two limits L and U so that 

 (    ( 
 )   )       

where    is a new observation obtained from model given in eq.6. 

For linear models (ie homoscedastic without transformation) the result is exact while the 

Delta-method is used when the model is non-linear. The 90% confidence interval of the 

reference band is obtained using the Delta-method. A complete description of the method can 

be found in [5]. 

 

 

How to do in practice 

 

A click on the button  gives the following menu 
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Select the data (analyte concentration) in the spreadsheet 

Clicking in the "Covariate" box allows selecting one or several covariates. 

The box "parametric" declares that a parametric model is to be selected. 

The box "Homoscedastic" allows toggling between homo and heteroscedastic models  

The box "Polynomial" allows to select the degree of the polynom. When nothing is selected, a 

polynom of degree 1 is selected by default. 

 

Let us first try a heteroscedastic model with a Box-Cox transformation. 
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Using this model we declare that 
        

 
  (            

 (    (         ))
 
)  (eq. 7) 

 

Depending of your computer, for this amount of data the computation can be a bit long. 

Clicking on OK produces a single spreadsheet containing a table with the parameters estimate 

and four plots. 

 

Table 1: This table gives the parameters estimate for model described in eq. 7. 

Reference Value 
Advisor V2.1 

          

      Date 17/02/2012 

      

Performed 
by 

Didier 

      Regression 
     Dep. var: Creat N = 1460 Squared Multiple R 0.099 

 

        Parameter se T P(2-tail) 
 Intercept 26.205 0.138 189.312 0.000 
 Age -0.018 0.001 -12.620 0.000 
 a 0.000 0.001 0.003 0.997 
 S2 5.750 
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lambda               test for lambda=1 0.604 0.001 -513.051 0.000 
                             test for lambda=0     783.515 0.000 
  

 

Before beginning the interpretation of these results, we have to check that our model 

approximately describe the data by having a look on figure 1 that represents the weighted 

residuals versus Age. 

 

 
Figure 2: Weighted residuals of the regression model described by eq. 7. If the model is 

reasonable, the residuals should be centered about 0. No specific shape should appear. A 

specific shape can be a U shape or a conic shape. Here the residuals seem to be well 

distributed around 0. 

 

As we can see, the weighted residuals seem to be well distributed around zero. We can thus 

read the results contained in table 1. 

 

From this table we obtain an estimate of lambda ( ): 0.604. The actual value of lambda is 

different of 1 (P<0.001) implying that a Box-Cox is needed, and it is different of zero 

(P<0.001). There is no need to log-transform the creatinine concentrations. 

Next, we can see that the estimate of a = 2.544x10
-6

 is so small that we can't ensure that, 

accounting to its uncertainty (se = 0.00075), its actual value is different of 0 (P=0.997).  

 

Thus, this model seems to be too complex for these data. We are going to simplify it by 

setting a=0 i.e. we choose the following homoscedastic model: 

 
        

 
  (            

 )  (eq. 8) 
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Table 2: This table gives the parameters estimate for model described in eq. 8. 

Reference Value 
Advisor V2.1 

          

      Date 17/02/2012 

      Performed by Didier 

      Regression 
     Dep. var: Creat N = 1460 Squared Multiple R 0.098 

 

        Parameter se T P(2-tail) 
 Intercept 26.205 0.138 189.312 0.000 
 Age -0.018 0.001 -12.620 0.000 
 S2 5.751 

    

      lambda               test for lambda=1 0.604 0.001 -513.049 0.000 
                             test for lambda=0     783.516 0.000 
 

      

      

      Analysis of variance 
       SS Df MS F P 

Regression 915.904 1 915.904 159.253 0.000 

Residual 8385.316 1458 5.751     

Total 9301.220 1459 
    

Let us now comment this output. 

 

The output contains 2 tables: first a table named "Regression" giving the parameters estimate 

and because the model is homoscedastic, an overall table named "Analysis of variance" 

giving the decomposition of variability. 

We need first to examine the table "Analysis of variance". It says to us that the chosen model 

explains significantly variations of Creatinine (P<0.000). 

The percentage of variability explained by this model is given by "Squared Multiple R". 

Actually only 9.8% of the variability is explained by the model. 

The same information is contained in figure 2 that represents the data (creatinine) versus the 

fitted values. As the model significantly explains some variability, we can look at the table 

"Regression". 

The lambda parameter is estimated to be: 0.604 with a standard error of 0.001. As already 

seen, lambda is significantly different of 1 i.e. there is a need for a Box-Cox transformation, 

and of 0 i.e. there is no need to log-transform the creatinine data. 

The first two lines of this table respectively entitled "Intercept" and "Age" give information 

on the corresponding parameter. From these lines we get estimates for    (26.205) and    (-

0.018). The corresponding standard errors are contained in the next column. The column P(2-

tail) gives the result of the t-test on nullity of the parameters: both    and    are significantly 

different of 0. 

 

The linear model applies to the Box-Cox transformed data: 

            

     
                  

From this model, we can use the following back-transformation to obtain the fitted values: 

      [        (                )]        
These values are contained in the column named Ref 0.5. 
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Figure 2: The data are represented versus the fitted value obtained with the model. The red 

line represents the first bisector line. The magnitude of dispersion on the y-axis gives 

information on the actual dispersion of the data. The magnitude of dispersion on the x-axis 

gives information on what the model explains. We can see here that even if the model 

explains some dispersion, it does not explain a large part of the dispersion. Squared multiple 

R quantifies how much dispersion the used model actually explains. It is here equal to 9.8 % 
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2) Non Parametric models 

In such models, the distribution of the data is estimated as a weighted mixture of simple 

distributions. In this version of RefValAdv a single covariate can be used. Non parametric 

models can be used only when the number of data is sufficient. These models should thus be 

used with large datasets.  

These models only assume that data are independent i.e. follow-up data should not be 

analyzed using these methods. They do not assume any specific relationship between the 

covariate and the analyte for which the reference band is to be built. In this respect, they are 

very robust to a departure to usual distributional assumptions required to build reference 

bands. 

Four methods can be used to build nonparametric reference bands. 

1) The Kernel method use a Gaussian kernel for the x-axis  

2) The double Kernel method use a Gaussian kernel for x-axis and an uniform kernel for 

the y-axis (cf []) 

3) A local constant kernel smoother's method 

4) A local linear kernel smoother's method 

A full explanation of these methods is beyond the scope of this short note (cf [6] and [7]). 

However, if the sample size is large enough, the reference bands obtained with these methods 

can be used safely. 
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